A Synthetic Transmembrane Polyether Model Active in Lipid Bilayers

Carmen G. Espínola, Ricardo Pérez, and Julio D. Martín^{*}

*Instituto de In*V*estigaciones Quı*´*micas, CSIC, Ame*´*rico Vespucio, s/n, Isla de la Cartuja, 41092 Se*V*ille, Spain*

jdelgado@cica.es

Received July 20, 2000

A model polyether-based ion channel-like compound was rationally designed and synthesized. Macromolecules 1c−**f were incorporated into phospholipid vesicles and shown to facilitate the transmembrane sodium transport.**

The recently reported¹ crystal structure of the potassium ion (K^+) channel resolves some aspects of channel selectivity and establishes the physical principles underlying selective K^+ conduction. Remarkably, the crystal structure reveals that main chain atoms create a structurally constrained stack of oxygen atoms that tightly coordinate K^+ ions but not smaller Na⁺ ions. However, to fully understand the molecular mechanism of these complex processes, model studies with carefully designed synthetic analogues will be essential.2 Our interest was to determine, based on $Na⁺$ transport rate, if flexible polyoxyethylene systems are able to stand on a welldefined organization in lipid bilayers.

It was anticipated that the incorporation of the flexible molecule **1d** into a lipid bilayer would result in the adoption of an extended conformation of its ion-conducting (polyether) segments,³ having a length (∼32 Å)⁴ which nearly matches the thickness of the PC membrane.

The concept of our approach for the synthesis of **1d** employing Ru-catalyzed^{5,6} olefin metathesis is outlined in Scheme 1. In concentrated substrate solutions,⁷ acyclic diene metathesis (ADM) of precursor $4^{8,9}$ may proceed¹⁰ to afford

(4) Length refers to distance among pyran oxygens in fully extended polyoxyethylene chains and was calculated by molecular mechanics routine.

(6) For preparation of Ru-catalyst, see: (a) Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1993 , 115 , $9858-9859$. (b) Nguyen, S. H.; Ziller, J. W. *J. Am. Chem. Soc.* **¹⁹⁹³**, *¹¹⁵*, 9858-9859. (b) Nguyen, S. T.; Johnson, L. K.; Grubbs, R. H. *Angew. Chem.* **¹⁹⁹⁵**, *107,* ²¹⁷⁹-2181; *Angew. Chem., Int. Ed. Engl.* **¹⁹⁹⁵**, *³⁴*, 2039-2041. (d) Schwab, P.; Grubbs, R. H.; Ziller, J. W. *J. Am. Shem. Soc.* **¹⁹⁹⁶**, *¹¹⁸*, 100-110.

(7) Conditions of concentrated substrate solutions for ADM: 0.1 M in CH_2Cl_2 , 2 mol % of ruthenium carbene $[(PCy_3)_2RuCHPh]Cl_2$.

^{(1) (}a) Doyle, D. A.; Morais-Cabral, J.; Pfuetzner, R. A.; Kuo, A.; Gulbis, J. M.; Cohen, S. L.; Chait, B. T.; Mackinnon, R. *Science* **¹⁹⁹⁸**, *280,* ⁶⁹- 77. (b) Mackinnon, R.; Cohen, S. L.; Kuo, A.; Lee, A.; Chait, B. T. *Science* **¹⁹⁹⁸**, *²⁸⁰*, 106-109. (c) Kreusch, A.; Pfaffinger, P. J.; Stevens, C. F.; Choe, S. *Nature* **¹⁹⁹⁸**, *³⁹²*, 945-948.

⁽²⁾ Reviews related with synthetic models for transmembrane channels: (a) Gokel, G. W.; Murillo, O. *Acc. Chem. Res.* **¹⁹⁹⁶**, *²⁹*, 425-432. (b) Fyles, T. M.; Straaten-Nijenhuis, W. F. In *Comprehensive Supramolecular Chemistry*; Reinhoudt, D. N., Ed.; Elsevier Science Ltd.: Oxford, 1996; Vol. 10, pp 53-77. (c) Voyer, N. *Top. Curr. Chem.* **¹⁹⁹⁶**, *¹⁸⁴*, 1-37. (d) Akerfeldt, K. S.; Lear, J. D.; Wasserman, Z. R.; Chung, L. A.; DeGrado, W. F. *Acc. Chem. Res.* **¹⁹⁹³**, *²⁶*, 191-197.

⁽³⁾ Incorporation of macromolecular polyether derivatives into lipids has been shown to result in cation transport rates comparable to those ion channels formed by natural and synthetic oligopeptides or antifungal macrolides: (a) Fyles, T. M.; Loock, D.; Zhou, X. *J. Am. Chem. Soc.* **1998**, *120,* ²⁹⁹⁷-3003. (b) Meillon, J.-C.; Voyer, N. *Angew. Chem.* **¹⁹⁹⁷**, *¹⁰⁹*, ¹⁰⁰⁴-1006; *Angew. Chem., Int. Ed. Engl.* **¹⁹⁹⁷**, *³⁶*, 967-968. (c) Pechulis, A. D.; Thompson, R. J.; Fojtik, J. P.; Schwartz, H. M.; Lisek, C. A.; Frye, L. L. *Bioorg. Med. Chem.* **¹⁹⁹⁷**, *³⁸*, 6339-6342. (d) Abel, E.; Meadows, E. S.; Suzuki, I.; Jin, T.; Gokel, G. W. *J. Chem. Soc., Chem. Commun.* **¹⁹⁹⁷**, 1145-1146. (e) Murray, C. L.; Meadows, E. S.; Murillo, O.; Gokel, G. W. *J. Am. Chem. Soc.* **¹⁹⁹⁷**, *¹¹⁹*, 7887-7888. (f) Murillo, O.; Suzuki, I.; Abel, E.; Murray, C. L.; Meadows, E. S.; Jin, T.; Gokel, G. W. *J. Am. Chem. Soc.* **¹⁹⁹⁷**, *¹¹⁹*, 5540-5549. (g) Matile, S.; Nakanishi, K. *Angew. Chem.* **¹⁹⁹⁶**, *¹⁰⁸*, 812-814; *Angew. Chem., Int. Ed. Engl.* **¹⁹⁹⁶**, *³⁵*, 757- 759. (h) Stadler, E.; Dedek, P.; Yamashita, K.; Regen, S. L. *J. Am. Chem. Soc.* **¹⁹⁹⁴**, *¹¹⁶*, 6677-6682 and references therein.

⁽⁵⁾ For general reviews on olefin metathesis in organic synthesis, see: (a) Ivin, K. J.; Mol, J. C. *Olefin Metathesis and Metathesis Polymerization*; Academic Press: New York, 1997. (b) Schuster, M.; Blechert, S. *Angew. Chem.* **¹⁹⁹⁷**, *¹⁰⁹*, 2124-2145; *Angew. Chem., Int. Ed. Engl.* **¹⁹⁹⁷**, *³⁶*, ²⁰³⁶-2056. (c) Grubbs, R. H.; Miller, S. J.; Fu, G. C. *Acc. Chem. Res.* **¹⁹⁹⁵**, *²⁸*, 446-452.

Scheme 1

the dimer **3** (20%) (the reaction was not completed and starting material, **4**, was recovered). After introduction of the polyether chain, we obtained compound **2**, which could be further cyclized to give $1d^{11}$ (82%) by ring closing metathesis (RCM) conducted under high dilution conditions.12

The primary objective of this work was established, unequivocally, whether a simple lipophilic polyether such as **1d** could, in fact, mimic the essential functional features of natural transport processes. It was anticipated that the inner macroring would embed in the membrane and the two terminal oxacyclic rings would be near the bilayer surfaces.¹³ This suggests that **1d** may not use the arene residues as relays but possibly as membrane anchors. If the arenes remain outside the membrane, they may interact with the polar headgroup residues. Such interactions are known¹⁴ and could stabilize the extended conformation of **1d**, as shown in

⁽⁸⁾ Compound **4** was prepared from tri-*O*-acetyl-D-glucal by the following ten-step sequence of reactions: (a) CH_2 =CHCH₂SiMe₃ (1.5 equiv), TiCl₄ (1.0 equiv) , CH₂Cl₂ (0.2 M) , -78 °C , 2 h; (b) NaOMe (1.0 equiv), MeOH (0.5 M), 25 °C, 30 min; (c) Me₂C(OMe)₂ (1.5 equiv), POCl₃ (cat.), CH₂-Cl₂ (0.6 M), 25 °C, 12 h; (d) NMO (1.0 equiv), OsO₄ (cat.), H₂O/THF (1/1) (0.2 M), 25 °C, 12 h, 74% over four steps; (e) NaIO4 (1.5 equiv), MeOH: H₂O (8:1), 0 °C, 1 h, then NaBH₄ (2.0 equiv), 0 °C, 1 h; (f) BnBr (2.0 equiv), NaH (1.5 equiv), THF (0.5 M), 25 $^{\circ}$ C, 12 h; (g) NMO (1.0 equiv), $OsO₄$ (cat.), THF/H₂O (1/1), 25 °C, 24 h, 66% over three steps; (h) BnBr (4.0 equiv), NaH (3.0 equiv), THF, 25 °C, 12 h; (i) CSA (0.2 equiv), CH₂Cl₂: MeOH (1: 1), 0 °C, 5 h; (j) 'BuOK (1.7 equiv), THF (0.1 M), $CH_2=CHCH_2(OCH_2CH_2)_n$ OTs ($n = 4$) (1.5 equiv), 1 h.

⁽⁹⁾ **⁴**: 1H NMR (500 MHz, CDCl3) *^δ* 7.32-7.24 (m, 15H, aromatic), 5.89 (dddd, $J = 5.0$, 5.0, 10.4, 17.0 Hz, 1H, CH=CH₂), 5.15 (d, $J = 10.4$ Hz, 1H, CH=CH₂), 5.25 (dd, *J* = 1.6, 17.0 Hz, 1H, CH=CH₂), 4.63 (d, *J* $=$ 12.3 Hz, 1H, C*H*₂Ph), 4.60 (d, *J* = 12.3 Hz, 1H, C*H*₂Ph), 4.52 (d, *J* = 12.0 Hz, 1H, C*H*₂Ph), 4.50 (d, $J = 12.0$ Hz, 1H, C*H*₂Ph), 4.43 (d, $J = 12.0$ Hz, 1H, C*H*₂Ph), 4.18 (ddd, $J = 3.0$, Hz, 1H, C*H*₂Ph), 4.41 (d, *J* = 12.0 Hz, 1H, C*H*₂Ph), 4.18 (ddd, *J* = 3.0, 5.0, 8.0 Hz, 1H, C*H*), 3.99 (br d, *J* = 6.0 Hz, 2H, OC*H*₂CH=CH₂), 3.95 (ddd *J* = 4.0, 4.0, 11.4 Hz, 1H, OC*H*₂CH₂O), 3.79 (ddd $(\text{ddd}, J = 4.0, 4.0, 11.4 \text{ Hz}, 1H, OCH_2CH_2O), 3.79 \text{ (ddd}, J = 5.0, 6.5, 11.4)$ Hz, 1H, CH₂OH), 3.74 (ddd, J = 4.4, 4.4, 11.4 Hz, 1H, OCH₂CH₂O), 3.71 (dd, $J = 8.0$, 9.6 Hz, 1H, C*H*), 3.69 (dd, $J = 8.9$, 11.4 Hz, 1H, C*H*₂OH), 3.68 (dd, $J = 3.0$, 9.6 Hz, 1H, C*H*), 3.63 – 3.59 (m, 11H, C*H*, OC*H*₂CH₂O), 3.68 (dd, *J* = 3.0, 9.6 Hz, 1H, C*H*), 3.63–3.59 (m, 11H, C*H*, OC*H*₂CH₂O), 3.59–3.56 (m. 4H, OC*H*₂CH₂O), 3.48 (ddd, *J* = 5.0, 8.0, 8.9 Hz, 1H, C*H*) 3.59–3.56 (m, 4H, OC*H*₂CH₂O), 3.48 (ddd, *J* = 5.0, 8.0, 8.9 Hz, 1H, C*H*), 3.45 (br dd *J* = 5.1, 7.2 Hz, 2H, C*H*₂OBn), 2.60 (br s. 1H, O*H*), 1.84 3.45 (br dd, *^J*) 5.1, 7.2 Hz, 2H, C*H*2OBn), 2.60 (br s, 1H, O*H*), 1.84 $\left(\text{ddd}, J = 5.0, 5.0, 9.5, 14.2 \text{ Hz}, 1H, CH_2CH_2OBn\right), 1.68 \left(\text{ddd}, J = 2.0, \right)$ 5.3, 7.3, 14.2 Hz, 1H, C*H*2CH2OBn). 13C NMR (125 MHz, CDCl3) *δ* [138.3, 138.2, 138.1 (d, 3 × C, aromatic)], 134.8 (d, CH=CH₂), [128.4, 128.4, 128.3, 127.9, 127.7, 127.6, 127.5 (d, $7 \times C$, aromatic], 117.1 (t, CH=

*C*H2), [78.8, 76.9, 76.0, 73.6 (d, 4 × C, *C*H)], 73.1 (t, *C*H2Ph), 72.2 (t, OCH₂CH=CH₂), 71.9 (t, CH₂Ph), 71.9 (d, CH), 71.8 (t, CH₂Ph), [70.8, 70.6, 70.6, 70.5, 69.4 (t, 5 × C, O*C*H2CH2O], 66.6 (t, *C*H2OBn), 62.9 (t, *C*H₂OH), 29.3 (t, *C*H₂CH₂OBn). [α]_D = +2.3° (*c* 1.2, *CHCl₃*); MALDI-TOF-MS (2,5-dihydroxybenzoic acid) m/z 718.6, 734.6 ([M + Na]⁺ requires 717.86, ($[M + K]^+$ requires 733.86).

^{(10) (}a) Arakawa, K.; Eguchi, T.; Kakinuma, K. *J. Org. Chem.* **1998**, *⁶³*, 4741-4745. (b) Pitarch, M.; Mckee, V.; Nieuwenhuyzen, M.; Mckervey, M. A. *J. Org. Chem.* **¹⁹⁹⁸**, *⁶³*, 946-951. (c) Zuercher, W. J.; Hashimoo, M.; Grubbs, R. J. *J. Am. Chem. Soc.* **¹⁹⁹⁶**, *¹¹⁸*, 6634-6640.

Figure 1. Cation flux would be enhanced by organization within the bilayer, i.e., by forging a defined conduit. Indeed, this appears to be what is observed for bacteriorhodopsin,¹⁵ which is rigidified by an α -helical structure and ionophore 1d may be anchored at the membrane surface as well.¹⁶

The five homologues of **1d**, compounds $1a - c$ and $1e, f^{17}$

Integration and studied by ²³Na NMR techniques using were synthesized and studied by ²³Na NMR techniques, using the dynamic (equilibrium) NMR method, presented initially by Riddell and Hayer¹⁸ and recently extended by Hinton et al.19

Lecithin large unilamellar (LUV) vesicles were prepared by the dialytic detergent removal method of Reynolds^{20} (20 mM PC, 20% volume entrapment, $[Na^+] = 200$ mM). Dysprosium (external solution, 5 mM, tripolyphosphate) was added to create a $10-15$ ppm shift difference of ²³Na inside

Figure 1. Postulated channel conformation for **1d** in a phospholipid bilayer.

from 23Na outside. Incorporation of **1a**-**^f** was accomplished by microliter injection of the appropriate stock solution (2 mM) at 25 °C. Final concentrations were typically $0-160$ *μ*M. The transport rate $K = π(v - v_0)$, where v_0 is the line width at concentration $0 \mu M$, before addition of ionophore] increases with the increasing concentration of ionophores. This experiment shows that differences in flux rates correlate directly to differences in the length of the polyoxyethylene chains and with the amount of compound inserted into the bilayer. As shown in Table 1, compounds **1c**-**^f** were found to facilitate the transmembrane transport of sodium cations

(12) Conditions of dilute solution for RCM: 0.005 M in CH₂Cl₂, 20 mol % cat.

(13) Heginbotham, L.; Lu, Z.; Abramson, T.; MacKinnon, R. *Biophys. J.* **¹⁹⁹⁴**, *⁶⁶*, 1061-1064.

(14) (a) Petti, M. A.; Shepodd, T. J.; Barrans, R. E., Jr.; Dougherty, D. A. *J. Am. Chem. Soc.* **¹⁹⁸⁸**, *¹¹⁰*, 6825-6840. (b) Kearney, P. C.; Mizoue, L. S.; Kumpf, R. A.; Forman, J. E.; McCurdy, A.; Dougherty, D. A. *J. Am. Chem. Soc.* **¹⁹⁹³**, *¹¹⁵*, 9907-9919. (c) Maguire, G. E. M.; Meadows, E. S.; Murray, C. L.; Gokel, G. W. *Tetrahedron Lett.* **¹⁹⁹⁷**, *³⁸*, 6339-6342. (15) Ovchinnikov, Yu.; Abdulaev, N.; Feizina, M.; Kiselev, A.; Lobanov,

N. *FEBS Lett.* **¹⁹⁷⁹**, *¹⁰⁰*, 219-224.

⁽¹¹⁾ **1d**: 1H NMR (500 MHz, CDCl3) *δ* 7.30 (m, 30H, aromatic), 5.77 (br s, 4H, CH=CH), 4.61 (d, $J = 12.4$ Hz, 2H, CH₂Ph), 4.56 (d, $J = 12.2$ Hz, 2H, C*H*2Ph), 4.52 (br s, 4H, C*H*2Ph), 4.41 (br s, 4H, C*H*2Ph), 4.12 (ddd, $J = 4.0$, 4.0, 8.1 Hz, 2H, C*H*), 3.99 (br t, $J = 4.2$ Hz, 8H, C*H*₂CH= CHC H_2), 3.87 (ddd, $J = 4.5$, 4.5, 15.4 Hz, 2H, CHOC H_2 CH₂O), 3.72-3.50 (m, 74H), 3.47 (m, 4H, C*H*2OBn), 1.84 (m, 2H, C*H*2CH2OBn), 1.73 (m, 2H, CH₂CH₂OBn). ¹³C NMR (125 MHz, CDCl₃) δ 138.5 (q, aromatic), 138.4 (q, 2 × C, aromatic), 129.5 (d, 4 × C, CH=CH), [128.4, 128.3, 128.3, 127.9, 127.7, 127.7, 127.7, 127.6, 127.5 (d, aromatic)], [77.9, 75.9, 75.8, 73.4 (d, 4 × C, *C*H)], [73.1, 72.0, 71.5, 71.2 (t, 4 × C, *C*H2)], 70.8 (d, 2 × C, *C*H), [70.8, 70.6, 70.6, 70.5, 70.5, 70.4, 69.5 (t, 7 ×C, *C*H2)], 66.9 (t, 2 × C, *C*H2OBn), 29.7 (t, 2 × C, *C*H2CH2OBn). HRMS *m*/*z* 1787.942885 ([M ⁺ Na]⁺ requires 1787.942885). **²**: 1H NMR (500 MHz, CDCl₃) δ 7.27 (m, 30H, aromatic), 5.80 (dddd, $J = 4.7, 5.7, 10.4, 16.4$ Hz, 2H, CH=CH₂), 5.74 (br s, 2H, CH=CH), 5.20 (d, $J = 10.4$ Hz, 4H, CH= C*H*₂), 4.58 (d, $J = 12.4$ Hz, 2H, C*H*₂Ph), 4.55 (d, $J = 12.4$ Hz, 2H, C*H*₂-Ph), 4.52 (br s, 4H, C*H*2Ph), 4.40 (br s, 4H, C*H*2Ph), 4.13 (m, 2H, C*H*), 4.0 (br s, 8H, CH₂CH=CHCH₂, CH₂CH=CH₂), 3.82 (m, 2H, CHOCH₂CH₂O), 3.67-3.55 (m, 74H), 3.53-3.35 (m, 4H, C*H*2OBn), [1.96, 1.82 (m, 4H, C*H*2CH2OBn)]. 13C NMR (125 MHz, CDCl3) *δ* 134.3 (q, aromatic), [128.4, 128.3, 128.3, 128.3, 127.9, 127.8, 127.7, 127.6 (d, aromatic)], 117.2 (t, 2xC, CH₂CH=CH₂), [77.3, 75.9, 75.9, 73.4 (d, 4 × C, *C*H)], [73.1, 72.3, 72.1, 71.5 (t, 4 × C, *C*H2)], 70.9 (d, 2 × C, *C*H), [70.6, 70.6, 69.4 (t, 3 × C, *C*H2)], 66.9 (t, 2 × C, CH2*C*H2OBn), 24.6 (t, 2 × C, *C*H2CH2OBn). FAB-MS (thioglycerol) m/z 1816 ($[M + Na]$ ⁺). **3**: MALDI-TOF-MS (2, 5- Dihydroxybenzoic acid) *^m*/*^z* 1385.1, 1401.3 ([M ⁺ Na]⁺ requires 1384.67, $[M + K]^+$ requires 1400.67).

across the lipid bilayer of the LUVs. Compounds **1a** and **1b** are inactive at any concentration, indicating that indiscriminate damage to bilayers does not occur. The observed **1a** < $1b \leq 1c \leq 1d \geq 1e \geq 1f$ transport activity of the six oligomers thus arises with all likelihood from differences in length and not from unequal partition coeficients. Although various chain conformations and packings were considered, the above-reported results agree best with fully extended chains, extended normal to the layers with the ethylene oxide core in a planar zigzag conformation.²¹

In conclusion, we wish to emphasize that (1) the synthetic strategy to prepare compounds **1a**-**^f** is simple and rapid and allows further molecular engineering of this type of compounds, (2) only compounds with a length greater than ∼26 Å (**1c**) are active in lipid bilayer, and (3) compounds longer than ∼38 Å are less active than **1d**. We believe that a length greater than that of the membrane hinders the transport in this case because the conformation is too flexible into the lipid bilayer for sodium transport. Applications of this strategy for the design of synthetic cell-surface receptor models²² are on going and will be reported elsewhere.²³

Acknowledgment. This work was supported by grants (PB97-1123) from the Ministry of Education and Culture and the Ramón Areces Foundation. C. G. Espínola thanks the Junta de Andalucía for a Predoctoral Fellowship.

OL0063555

⁽¹⁶⁾ Abel, E.; Fedders, M. F.; Gokel, G. W. *J. Am. Chem. Soc.* **1995**, *¹¹⁷*, 1265-1270.

⁽¹⁷⁾ **1a**: HRMS *^m*/*^z* 1259.628308 ([M ⁺ Na]⁺ requires 1259.628307). **1b**: HRMS *^m*/*^z* 1435.733167 ([M ⁺ Na]⁺ requires 1435.733168). **1c**: MALDI-TOF-MS (2,5-dihydroxybenzoic acid) *^m*/*^z* 1613.3, 1629.5 ([M + Na]⁺ requires 1612.96, [M + K]⁺ requires 1628.96). **1e**: MALDI-TOF-MS (2,5-dihydroxybenzoic acid) m/z 1966.4, 1982.0 ([M + Na]⁺ requires 1965.38, [M + K]⁺ requires 1981.38). **1f**: MALDI-TOF-MS (2,5-1965.38, [M ⁺ K]⁺ requires 1981.38). **1f**: MALDI-TOF-MS (2,5 dihydroxybenzoic acid) *m*/*z* 2142.0, 2158.3 ([M + Na]⁺ requires 2141.59, [M + K1⁺ requires 2157 70) $[M + K]^+$ requires 2157.70).

⁽¹⁸⁾ Riddell, F. G.; Hayer, M. K. *Biochim. Biophys. Acta* **1985**, *817*, ³¹³-317.

⁽¹⁹⁾ Buster, D. C.; Hinton, J. F.; Millett, F. S.; Shungu, D. C. *Biophys. J.* **¹⁹⁸⁸**, *⁵³*, 145-152.

⁽²⁰⁾ Mimms, L. T.; Zanpighi, G.; Nozaki, Y.; Tanford, C.; Reynolds, J. A. *Biochemistry* **¹⁹⁸¹**, *²⁰*, 833-840.

⁽²¹⁾ For an excellent conformational study of polyethylene/polyoxyethylene oligomers in solid state, see: Chem, Y.; Baker, G. L.; Ding, Y.; Rabolt, J. F. J. Am. Chem. Soc. 1999, 121, 6962-6963.

J. F. *J. Am. Chem. Soc.* **¹⁹⁹⁹**, *¹²¹*, 6962-6963. (22) For a previous study of cell-surface receptors based on rigid-rod molecules, see: Ghebremariam, B.; Matile, S. *Tetrahedron Lett.* **1998**, *39*, ⁵³³⁵-5338.

⁽²³⁾ A further account of work in this area will appear in an issue of the *Israel Journal of Chemistry* honoring the Canadian chemist Professor Raymond U. Lemieux.